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Abstract

In graphs with rich text information, constructing expressive
graph representations requires incorporating textual informa-
tion with structural information. Graph embedding models
are becoming more and more popular in representing graphs,
yet they are faced with two issues: sampling efficiency and
text utilization. Through analyzing existing models, we find
their training objectives are composed of pairwise proximi-
ties, and there are large amounts of redundant node pairs in
Random Walk-based methods. Besides, inferring graph struc-
tures directly from texts (also known as zero-shot scenario)
is a problem that requires higher text utilization. To solve
these problems, we propose a novel Text-driven Graph Em-
bedding with Pairs Sampling (TGE-PS) framework. TGE-PS
uses Pairs Sampling (PS) to generate training samples which
reduces ~99% training samples and is competitive compared
to Random Walk. TGE-PS uses Text-driven Graph Embed-
ding (TGE) which adopts word- and character-level embed-
dings to generate node embeddings. We evaluate TGE-PS on
several real-world datasets, and experimental results demon-
strate that TGE-PS produces state-of-the-art results in tradi-
tional and zero-shot link prediction tasks.

Introduction

Graph provides a fundamental tool to represent intercon-
nected entities (e.g., articles, diseases) and their attributes
(e.g., entity description). Graphs with rich text information
are ubiquitous in many fields, and there is often a strong de-
pendency between graph structure and text structure in these
graphs. Figure 1 shows an example. The example graph
contains two types of “connections”: (i) structural connec-
tion between (v4,v¢), (ii) textual “connections” between
(ve,vr) and (va,vp). By assuming there is a connection
between “bone” and “radius”, it is natural to infer the con-
nection between (vp,vr). This example shows how tex-
tual information exposes structural information. Hence, it is
promising to better utilize textual information in graphs.
Graph embedding is famous for its efficient represen-
tations for entities in graphs (Goyal and Ferrara 2017;
Nishana and Surendran 2013). The most important struc-
tures in graphs are interconnections between nodes. A se-
ries of models are proposed to maximize edge reconstruc-
tion probability with different proximities (Cai, Zheng, and

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

entire long
bone

. . injury of injury of
entire humerus || entire radius Jury Jury
humerus radius

Figure 1: Example graph with informative texts.

Chang 2018), e.g., LINE (Tang et al. 2015), DeepWalk (Per-
ozzi, Al-Rfou, and Skiena 2014) and node2vec (Grover and
Leskovec 2016). Although these models are widely used in
mapping nodes to low-dimensional dense vectors, they are
not well designed for graphs with rich text information. To
solve this problem, models like TADW (Yang et al. 2015),
CANE (Tu, Liu, and Liu 2017) and Paper2Vec (Ganguly and
Pudi 2017) are proposed to utilize textural information with
effectiveness in many scenarios.

However, these graph embedding models still need to re-
solve two issues. The first issue is sampling efficiency. The
optimization goals of these models can be summarized as
maximizing pairwise node similarity, thus the number of
training node pairs is critical to training time and can be
used as a metric of sampling efficiency. These models usu-
ally use edges as training node pairs directly like LINE, or
sample training sequences using Random Walk (RW) and
extract node pairs within a specific shortest distance like
DeepWalk and node2vec. RW generalizes the idea of di-
rectly sampling edges and shows better experimental perfor-
mance under similar settings. However, our theoretical and
empirical analysis shows that RW samples redundant node
pairs which severely lags efficiency.

The second issue is fext utilization. Currently, text utliza-
tion methods mainly rely on training node embeddings (NE)
and text embeddings (TE) together (denoted as NE+TE).
NE+TE firstly encodes structural and textual information
into an NE space and a TE space separately, and then com-
bines NE and TE together as the final graph representation.
However, NE+TE is not suitable for zero-shot settings (See
Figure 1), i.e., it is incapable of inferring graph structures
directly from texts. Since NE+TE requires both NE and TE,



it cannot generate high-quality representations for unseen
nodes.

In this paper, we propose a novel Text-driven Graph Em-
bedding with Pairs Sampling (TGE-PS) framework. TGE-
PS uses Pairs Sampling (PS) to efficiently generate train-
ing samples, and uses Text-driven Graph Embedding (TGE)
to produce final node representations. We analyze the re-
dundant sample phenomenon of RW theoretically, and pro-
pose PS to improve sampling efficiency. PS samples central-
neighbor node pairs directly from central node’s neighbor-
hood. We conduct experiments on 7 datasets and PS pro-
duces competitive or even better results in link prediction
and node classification tasks with much fewer training sam-
ples (saving ~99% samples) compared with RW. In embed-
ding stage, we propose TGE method. Since the node em-
beddings are generated from text embedding in TGE, it can
be applied to zero-shot scenarios. The comparison between
TGE-PS and other strong baseline models shows that TGE-
PS produces remarkably good results in traditional and zero-
shot link prediction tasks.

Related Works

Recent years various graph embedding models are becom-
ing more and more popular in representing graph struc-
tured data (Goyal and Ferrara 2017; Cai, Zheng, and Chang
2018). These graph embedding models can be categorized
into three classes, factorization-based, Random Walk (RW)-
based, and deep learning-based. Factorization-based models
focus on the adjacent matrices of graphs, and use matrix fac-
torization (MF) to learn low-rank representations of nodes
(Ahmed et al. 2013; Cao, Lu, and Xu 2015; Ou et al. 2016;
Yang et al. 2015). RW-based models explore the neigh-
borhood of each node through sampling node sequences,
and then train node embeddings on the explored neighbor-
hoods. Among RW-based models, DeepWalk (Perozzi, Al-
Rfou, and Skiena 2014) and node2vec (Grover and Leskovec
2016) are the most representative, and DeepWalk can be re-
garded as a special case of node2vec. Deep learning-based
models mainly use deep representation learning techniques
to improve the quality of node embeddings (Wang, Cui, and
Zhu 2016; Cao, Lu, and Xu 2016; Kipf and Welling 2016).
There are also other types of graph embedding models like
LINE (Tang et al. 2015) and GraphGAN (Wang et al. 2017).

For graphs with rich texts, many models are proposed
to incorporate textual information with structural informa-
tion. TADW (Yang et al. 2015) incorporates text features
under the framework of matrix factorization. CANE (Tu,
Liu, and Liu 2017) uses convolutional networks and mutual
attention mechanism to learn text embeddings, which are
interacted with node embeddings via vector inner product.
These two models encode structural information and tex-
tual information into two separate embedding spaces and
generate final node representations from the interactions
between these two spaces. Paper2Vec (Ganguly and Pudi
2017) pre-trains node embeddings with text embeddings in
Skip-gram model, and then the node embeddings are trained
with node2vec. STNE (Liu et al. 2018) “self-translates” se-
quences of text embeddings into sequences of node embed-
dings. All the above models rely on known connections to

generate graph embeddings, thus are not applicable to zero-
shot scenarios.

Text-driven Graph Embedding with Pairs
Sampling Framework

Our Text-driven Graph Embedding with Pairs Sampling
(TGE-PS) framework includes two stages: sampling and
embedding. We propose Pairs Sampling (PS) method for ef-
ficient sampling and Text-driven Graph Embedding (TGE)
method for better utilizing texts. Inside TGE-PS, TGE ben-
efits from PS for that small quantity of node pairs greatly
reduces training time and hence TGE is capable of adopting
time-costing yet expressive RNN-based structure. We show
the architecture of TGE-PS in Figure 2. For simplicity, we
omit the fully-connected layer and the lookup layer in Fig-
ure 2. In this section, we firstly give definitions of notions,
and then introduce PS and TGE separately.

Definitions

Let G = (V, E) be the given graph and f : V — R? be the
mapping function from the node set to the embedding space,
where d is the dimension of the embedding space. We denote
the central and context embeddings of node v; as e; = f(v;)
and e} = f'(v;), and the trainable parameters as §. We de-
fine the distance dist(u,v) between u and v as the length
of the shortest path between them. And we define node v;’s
o-neighborhood NV? as a set of nodes within a given distance
o from v;, N°(v;) = {v; € V|dist(v;,v;) < o}.

Pairs Sampling Method

Random Walk Since DeepWalk can be regarded as a spe-
cial case of node2vec, our discussion mainly focuses on
node2vec. As stated in (Grover and Leskovec 2016), the ob-
jective of node2vec is to maximize the log-probability of
observing the o-neighborhood N? of a node v; given e;,
log Pr(N?|v;). node2vec makes conditional independence
assumption to simplify the objective as:

max SN - N llog Zi, (D
vi €V v eNE

where Z; denotes the normalizing term and 7; ; is the ab-
breviation of the score function 7(v;, v;) representing condi-
tional probability p(v;|v;). Since Z; is usually approximated
by hierarchical softmax or negative sampling in training and
relies on 7(v;,v;), we mainly focus on the scoring terms
i 2. Ti,j- By making symmetry in feature space assump-
tion, node2vec defines 7; ; as the inner product of embed-
dings, i.e., egTei. The training objective becomes to maxi-
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Figure 2: Model architecture of TGE-PS. Note: Circles represent nodes and colored boxes represent embeddings. Blue boxes
represent word-level embeddings, yellow boxes represent character-based word embeddings, green boxes represent central
embeddings and gray boxes represent neighbor embeddings. The sampled nodes and paths are colored as red.

where s denotes a node sequence, S is the set of all se-
quences, w; is the abbreviation of the window function
w(v;, s) which denotes the nodes within the window of v;
when v; appears in s and j’ denotes the position of v; in s,
T denotes the sampling times of RW starting from v;, T; de-
notes times of v; appearing in sequences except the one that
v; is the start node, T}; denotes the amount of v; appearing

in N¥ when v; appears in sequence s and W denotes the
window size. According to the objective, there are 1" + T;
windows centering at v; to be optimized in the sequences.
Thus «; is the ratio of v; being more “important” than the
other nodes, e.g., bridge nodes are likely to be sampled more
frequently, and these nodes have larger . f3.|; reflects the
distribution of neighbor nodes appearing in training samples
and (3;); is the probability of v; sampled in N?. Induced
from proofs in TADW, in DeepWalk [3,;’s are actually the
non-zero elements of the i-th row of transition matrix M
in DeepWalk, or biased transition matrix}/’ in node2vec.
Therefore, 3;; also reflects transition probability from v; to
neighbor node v;.

Till now, we get the ideal general training objective of
RW-based models regardless of the normalizing term. Now
we analyze the sampling inefficiency of RW in two aspects:

Biased Objective. Comparing Eq. (1) and (2), we find
node2vec is biased from its log-probability objective since
each neighborhood NP are weighted by different «;, unless
«; is equal for each node. However, as RW adopts a slid-
ing window to generate pairs from sampled sequences, the
number of training pairs of v; increases every time it is vis-
ited, and v; will have a larger «; if it is more frequently
visited. Hence node2vec introduces a prior distribution im-
plicitly, making its training objective biased from its pro-
posal in Eq. (1). If we follow Eq. (1) strictly, o should be all
zero and we should only sample each neighborhood T time,
which can reduce a lot of training samples.

Interconnected Neighbors. 3;|; converges to the biased
transition probability from v; to v; with sufficiently large
number of samples. Transition probability from v; to v;
is mainly affected by interconnections between neighbor

nodes, and in this case RW in fact introduces an assumption
that during training embeddings of central nodes, interac-
tions between neighbor nodes should be completely consid-
ered. Under this assumption, different neighbors have dif-
ferent probability to be sampled, and thus to sample neigh-
bor nodes with small degree may result in many more sam-
ples of those with large degree. Therefore, the ideal sam-
ple complexity of a neighborhood NF is determined by the
minimal sampling probability 3;,;, i.e., O(1/f;.);) where
vjx 18 least possible to be sampled , by assuming every
node in N¥ is sampled at least a minimum times to en-
sure sufficient training. This complexity must be greater than
O(INF|) since Bj.; < 1/|NF|. However, it is a free lunch
to assume when optimizing a central node v;, its neighbor
nodes v; € NF have already been trained and their embed-
dings have already been encoded with the structural infor-
mation respectively. This assumption must hold true after
training RW for some time, otherwise the target of node em-
bedding becomes ill-posed and can never be achieved. Thus
central-neighbor connections are much more important than
neighbor-neighbor connections, and neighbor-neighbor con-
nections within one neighborhood in fact will be considered
when they become the central-neighbor connections in other
neighborhoods. Therefore, adopting a stronger assumption
that alleviates variance of distribution (3. ; is still possible to
produce good results while decreases sampling complexity.

Method Introduction The intuition of Pairs Sampling
(PS) has two points: For the biased objective problem, we
sample each neighborhood the same times and introduce
higher-order Markov property to prevent a neighbor node
from being re-sampled; For the interconnected neighbors
problem, we sample central-neighbor pairs directly from a
neighborhood and ignore neighbor-neighbor connections.

For every node v;, we call one node v¢ as an o-th order
neighbor of v; when the shortest distance between v; and v;
is 0. To obtain the training node pairs set P, we sample the
neighbor nodes in MO in the following process:

1. Add all first-order neighbors of v; into the node set N



2. If O > 1, for every va 1 <0< 0O —1), sample a next-
order neighbor node v,‘i” from the following distribution:

if (v;,vZH) € F and

dist(vi,v0™) =0+ 1

0  otherwises.

N=

p(vp o) =

where Z is the number of (o + 1)-order neighbors connected
to v2. The sampled vy ™" is added into AV

3. For each node v; € N, add node pair (v;, v;’) into P.
4. Repeat for N times

We take the graph in Figure 2 as an example to illustrate
how PS works. In this graph, A is the central node, with
dashed circles indicating the neighbors of the same order.
Firstly, first-order neighbors {B, C, D, E'} are all sampled.
H is sampled from {F,G, H} as the successor of B. I is
sampled as the successor of D. J is sampled from {J, K} as
the successor of . Unsampled nodes are ignored in the next
iteration of sampling, only sampled nodes in this order can
be used to generate the next-order samples, e.g., H continues
searching while F’ stops. By now PS samples a set of node
pairs {(X, A)}| X € {B,C,D,E,H,I,J}}.

When adopting PS, the training objective becomes

mngN Z Z Z e;ei

v €V 0€{1,2,...,0} vy EN?

where vj is the j'-th sampled node in N?. By restricting
the max order of neighbors and the number of successors
for each node to be at most 1, we successfully set an upper
bound for the total number of node pairs. We also try other
variants of PS like sampling the next-order under a constant
probability instead of a constant number, or uniformly sam-
pling neighbor nodes in the same order regardless of those
in the former order. However, these policies are harder to
control the sample complexity (since high-order neighbors
increase exponentially) or ignore too much connections be-
tween neighbors.

Text-driven Graph Embedding method

Intuition Previous graph embedding models focus on
generating graph embeddings from only structural informa-
tion (denoted as NE) or incorporating text attributes with
structural information (denoted as NE+TE). NE+TE mod-
els can be regarded as encoding structural and textual infor-
mation into an NE space and a TE space respectively and
generate final node representations from the interactions be-
tween these two spaces. Apart from NE or NE+TE, gener-
ating graph embeddings from text embeddings (denoted as
TE2NE) is another practical method. We compare the three
methods in Table 1, where |V|, |D| and |T'| represent the to-
tal number of nodes, the size of dictionary and the average
length of texts respectively.

TE2NE is more suitable for large graphs with rich text in-
formation and strong text dependency. A large-scale graph
may contain million- to billion-level nodes, where the num-
ber of nodes is much larger than the number of words. Be-
sides, TE2NE can also apply to zero-shot scenarios, since

Table 1: Comparison among Different Methods.

NE NE+TE TE2NE

Space Complexity | O([V]) O(V]+1|D]) O(D])

Time Complexity 0(1) o(|T)) o(T))
Zero-shot Scenarios X X v

Text Dependency No Weak Strong

no explicit NE is required in inference. Therefore, we pro-
pose the Text-driven Graph Embedding (TGE) method that
makes the most of textual information by projecting tex-
tual information into the NE space. To model the text, we
adopt bidirectional LSTM (BiLSTM) (Ma and Hovy 2016)
for its success in Nature Language Processing field (Mikolov
and Zweig 2012; Mikolov et al. 2010). To deal with out-of-
vocabulary words in unseen nodes, we adopt character-level
embeddings. Character-level embeddings have proven suc-
cess in NLP tasks (Chung, Cho, and Bengio 2016; 2016;
Ma and Hovy 2016). The advantages of Character-level
embeddings are summarized by (Chung, Cho, and Bengio
2016) as: (i) good performance in out-of-vocabulary sce-
narios, (ii) ability to capture morphological features of lan-
guage and (iii) no need for segmentation. Hence, we adopt
character-level embeddings in addition to word-level em-
beddings.

Generating Embeddings We denote the set of words as
DY, the set of characters as D¢ and text of node v; to be t; =
{wi;,1 < j < |t;]}, where w;; € D* and [¢;] is the length
of ¢;. Each word w;; contains characters as w;; = {ci ik 1 <
k < |wsj|}, where ¢;;, € D¢ and |w;;| is the length of w;;.
We denote word- and character-level embedding vectors as
e" and e respectively.

We start by generating embedding of node v;. We feed the
sequence of character embeddings eSjJ:Iqu into character-
level BiLSTM and obtain a character-based word embed-
ding e%’»' as

—w c/.c

€5 = LSTMS(ef; 1.ju,,|)

—w' c(.c

€y = LSTMb(eij,\wm:l)
w —w’, w’

€; = [eij7eij]'

The character-based word embedding is concatenated
with the corresponding word embedding e;; and fed into the
word-level BILSTM layer as

—F w ) 4

€; = LSTM;([e;€1:|Ti|5e?j1:\Ti\])

<h !

e, = LSTMZ;U([eZ\TJ:l;eﬁ)\Ti\:l])
e; = tanh(W[eEh; €h+0b).

Now we obtain the text-based node embedding e; of node
v;. We also set up a lookup layer which embeds v; into dim-
dimension structure-based vector €] that is used to help train
e;, and outputs e; as the embedding vector of v;.

Training To reduce computation complexity, we adopt
Negative Sampling (Mikolov et al. 2013) like node2vec does
and define the loss function to be

Nacg

Lim (vi, v5) = —log(o(e;Tei)) - Z log(o(—e}"e;)),
’UkNP('U)



where e;, e} and eﬂc denotes embeddings of the central node,
the neighbor node in a pair, and the randomly sampled neg-
ative node, Ny, denotes the number of negative samples,

o denotes the sigmoid function and P(v) o d¥* denotes
the distribution of nodes when sampling negative samples,
where d,, is the degree of v.

We also apply Lo-regularization on parameters and em-
beddings

Nheg
Lreg(visvg) = ) wll3+leall3 +llef 15+ llekll3. 3)
k

The final objective is to minimize

L= Z (Esim (Uh 'Uj) + )\['reg (Uiv Uj))a 4)
(vi,vi)EP

where A is a hyper-parameter. We employ AdaGrad (Duchi,
Hazan, and Singer 2011) to minimize the loss.

Experiments
Datasets

To verify the effectiveness and efficiency of PS, we con-
duct a series of experiments including link prediction and
node classification over the following 7 datasets. We eval-
uate TGE-PS on link prediction tasks over 2 datasets.
These datasets include Cora (McCallum et al. 2000), Face-
book (Leskovec and Krevl 2014), Zhihu (Tu, Liu, and Liu
2017), BlogCatalog (BlogCat) (Zafarani and Liu 2009),
arXiv AstroPh (AstroPh) (Leskovec and Krevl 2014),
arXiv HepTh (HepTh) (Leskovec and Krevl 2014) and
Systemized Nomenclature of Medicine - Clinical Terms
(SNOMED CT) (Donnelly 2006). We list their details in Ta-
ble 2 where |V| and | E| refer to number of nodes and edges,
respectively. Apart from details in the table, Cora and Blog-
Cat have 7 and 39 types of labels respectively. We use the ab-
stract of each paper as the textual information in HepTh and
the longest description as textual information of each node
in SNOMED. Before conducting our experiments, the pre-
processing includes lowering all characters, removing stop
words and discarding punctuations. In practice, We keep all
nodes and p% edges of the dataset Data for training (de-
noted as Data@p%).

Table 2: Details of Datasets

Datasets V| |E| Type
Cora 2,211 5,214 Citation Graph
Facebook 4,039 88,234 Social Network
Zhihu 10,000 43,894 Q&A Datasets
BlogCat 10,312 333,983 Blog Directory
AstroPh 18,772 198,110 Co-work Network
HepTh 27,400 352,542 Citation Graph

SNOMED | 391,892 2,047,749 Health Terminology

Baselines

We evaluate our model against several graph embedding
models : LINE (Tang et al. 2015), DeepWalk (Perozzi, Al-
Rfou, and Skiena 2014), node2vec (Grover and Leskovec

2016), TADW (Yang et al. 2015), CANE (Tu, Liu, and Liu
2017), Paper2Vec (Ganguly and Pudi 2017) and STNE (Liu
et al. 2018). We also design a rule-based baseline embedding
model:

Text Matching represents each node as the average vec-
tor of pre-trained word embeddings from Glove (Penning-
ton, Socher, and Manning 2014) for every word in the text.
The performance of Text Matching reflects the dependency
between graph and text structure.

Evaluation Metrics

For link prediction, we adopt AUC (Area Under Curve)
(Hanley and McNeil 1982) to evaluate the embeddings and
compute the scores in two different ways:

e We use the same number of positive and negative pairs to
train a logistic regression classifier. For each pair, the clas-
sifier inputs the Hadamard products of the embeddings,
and outputs the binary classification results. We use the
trained classifier to infer the connectivity of pairs in an-
other set and compute the final AUC score, which we de-
note as AUC|R.

e We compute the score of each node pair in test set by

1/Niest if e:ep >ele,
score(ec) = 0.5/Nies:  ifele,=ele, (5
0 otherwise

where Ny 1s the number of tested nodes. By adding up
scores of all tested nodes we obtain the final AUC score,
which we denote as AUC,,;.

AUCr performs better in capturing potential relation be-
tween embeddings but may suffer from overfitting problem,
while AUC,;; is a naive yet solid measurement of embed-
ding results. Thus, we report the overall best results in two
columns, which represent AUC g and AUC,,;,, respectively.

For node classification, we report the macro-F; scores
over all classes as previous works do.

Experiments of Pairs Sampling

Theoretical Analysis Firstly, we compute the number of
sampled pairs of each method. Given the number of nodes
|V|, average degree d, walk length L, window size W and
walk time 7" in RW, and max order O and sampling time N
in PS, we present the expressions of node pairs number in
Table 3.

Table 3: Expressions of Node Pairs Number

Random Walk Pairs Sampling
#pairs | (2L —W — 1)WT|V| NOd|V|

We compute the number of sample pairs under RW and

PS and use r to represent the ratio of them as %
Our comparison is conducted over several preprocessed
datasets. Specially, we keep only 20% edges of SNOMED
for these reasons: (i) even under this setting there are over

400,000 edges in the training data; (ii) experiment results



show that 20% edges are sufficient for producing good re-
sults. For the fair comparison of the efficiency, we apply
grid search on L, W, T, O and N and generate correspond-
ing training sets for RW and PS. We select parameters with
the best performance on each dataset and compute the ra-
tio of node pairs. The ratios are reported in Table 4. Note
that the real ratios will be larger for that the number of pairs
sampled by PS is actually equal to or smaller than NOd|V/|.

Table 4: Ratios of Different Datasets

Datasets V| E| d r
Cora@50% 2,211 2,607 2.33 183.60
Cora@100% 2,211 5,214 4.42 140.46

Facebook@50% 4,039 44,117 2184 | 36.17
Zhihu@50% 10,000 21,947 4.28 | 369.16
BlogCat@100% 10,312 333,983 64.78 | 57.50
AstroPh@50% 18,772 99,054  10.56 | 55.40
HepTh@50% 27,400 176,271 12.86 | 99.79
SNOMED@20% | 391,892 409,550  2.09 | 409.36

From Table 4 we can see that (2L — W — 1)WT is much
larger than NOd and PS can significantly reduce the train-
ing samples (reducing ~99% samples) compared with RW.
Note that 7 is often much larger in sparse networks like
Cora, Zhihu and SNOMED. In graphs with small average
degree, RW often conducts DFS-like walks and encounter
leaf nodes, which results in frequent revisiting behaviors and
hence more redundant samples.

Link Prediction In traditional link prediction settings, a
portion of edges are removed in training set while ensuring
each node connected with at least one edge. The removed
edges are used as test set. We evaluate PS against RW on
various datasets. We use PS and RW to generate training
sets, and train node embeddings under the same framework.
The results are shown in Table 5.

Table 5: Link Prediction Results of RW and PS

Random Walk Pairs Sampling
AUCir  AUCpir  AUCirR  AUCpair
Cora@50% 0.9200 0.9293 09272  0.9394
Facebook@50% | 0.9921  0.9892  0.9922  0.9911
Zhihu@50% 0.8659 09144 0.8673 0.9136
AstroPh@50% 09788 09768  0.9795 0.9789
HepTh@50% 09741 09648 09743  0.9730
SNOMED@20% | 0.9350  0.9396  0.9359  0.9402

Datasets

Results in Table 5 show that:

e PS outperforms RW on almost all datasets. Experimen-
tal results indicate that even if RW consider extra infor-
mation like interconnection between neighbors and PS
adopts stronger assumptions for efficiency consideration,
PS still proves to be a competitive alternative to RW.

e In some datasets like Facebook and Zhihu where W =1
and O = 1, PS and RW is quite similar in performance.
However, PS generates fewer number of pairs and still
presents advantages in sampling efficiency.

Node Classification We evaluate PS against RW on one
small graph, Cora and another large graph, BlogCat. We use

all the nodes and edges to train node embeddings, and ran-
domly select 50% node labels to train the multi-label multi-
class SVM classifier, leaving the other 50% labels for test-
ing. Other settings are the same as the previous section. We
report the results in macro F}-Score in Table 6. Results in
Table 6 show that PS is at least competitive against RW on
node classification task.

Table 6: Node Classification Results of RW and PS

Dataset Random Walk Pairs Sampling
Cora@100% 0.8079 0.8085
BlogCat@100% 0.2581 0.2544

Parameter Sensitivity Max order O and sampling time
N are the major parameters of PS, and we conduct exper-
iments to analyze their parameter sensitivity. We study the
performance of PS on link prediction over Facebook, As-
troPh and HepTh. For each dataset, we fix IV at first to eval-
uate O = 1,...,8, and then we use the best O to evaluate
N =1,...,10. We plot the results in Figure 3 and Figure 4.
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Figure 4: Parameter sensitivity (sample time V).

From Figure 3 and 4 we can see that:

e Figure 3 shows that graph embedding models perform

better with a relatively small O. Larger value of O in-
troduces harmful noise and is harmful especially in small
graphs.

e It is interesting that AUC scores of Facebook remain in-

variant against NV in Figure 4. This is reasonable for that O
of Facebook is set to be 1, under which setting increasing
N adds only duplicates node pairs and has little impact on
AUC scores.



Experiments of TGE-PS

Link Prediction We evaluate TGE-PS on SNOMED and
HepTh respectively. The results are shown in Table 7. We
classify baseline models by with or without text utilization
and present them in two large groups.

Table 7: Link Prediction Results of Different Models

Model SNOMEDQ@20% HepTh@50%
AUCir  AUCpir  AUCR  AUCpu
LINE 0.6461  0.6985  0.7883  0.7520
DeepWalk 09164 09258 09711 0.9573
node2vec 0.9350 0.9396 09741 0.9648

Text Matching 0.8954  0.8717  0.7057  0.5700
TADW - - 0.8866  0.8977
CANE 09613 09544  0.9785 0.9388

Paper2Vec 09581 09604 0.9745 0.9748

STNE - - 0.9651 0.9572
PS 0.9359  0.9402 09758 0.9716
TGE-PS 0.9721  0.9621 09793 0.9752

In Table 7, “-” refers to results of failed experiments due

to OOM. From Table 7, we have following observations:

e TGE-PS outperforms all baseline models on both
datasets. This result indicates that generating node em-
beddings from text embeddings is practical in real-world
datasets.

e Incorporating textual information with structural infor-
mation helps constructing expressive graph embeddings.
Improvements of TGE-PS over PS or Paper2Vec over
node2vec strongly support this point. Only preserving
structural information like LINE or textual information
like Text Matching both present limitations.

e The improvements of TGE-PS are quite different on the
two graphs. Recall that we use the text description of
concepts in SNOMED, and we use the whole abstract
in HepTh, we owe this to that SNOMED has stronger
text dependency than HepTh. The performance of Text
Matching in SNOMED supports this point. Similar dif-
ference of improvements also appears between Paper2Vec
and node2vec.

Zero-Shot Link Prediction Unlike common link predic-
tion scenarios, where each node embedding is trained at
least once, zero-shot scenarios require inference on link ex-
istence with unseen nodes. Zero-shot scenarios are common
and important in real-world applications. Only TE-only and
TE2NE can be applied in these scenarios while NE-only and
NE+TE can not. However, to better study this problem, we
manage to conduct experiments on CANE by training with
whole model and evaluating it with TE part only, which we
denote as CANE (TE).

We conduct zero-shot link prediction experiments on
SNOMED and HepTh where 0.5% of the nodes and re-
lated edges are removed from the graph. We also conduct
ablation experiments on TGE-PS to analyze the influence of
character- and word-level embeddings. In ablation experi-
ments, we either: (i) remove word-level embeddings and re-
place [e*; e®’] with €®’, or (ii) remove character-level em-

beddings and replace [e*;e®’] with €. We use ‘-w’ and

‘-c’ to denote the two settings respectively. The results are
shown in Table 8.

Table 8: Zero-Shot Link Prediction Results

Model SNOMED HepTh
AUCir  AUCnir  AUCr  AUCpuir
Text Matching 0.9059 0.8813  0.5934 0.6250
CANE (TE) 0.5271  0.5344 0.6036  0.5288
TGE-PS (-w) 0.5000 0.5003  0.5000 0.5037
TGE-PS (-¢) 09701 0.9786  0.8979  0.9485
TGE-PS 0.9760 09811  0.8990  0.9485

From Table 8, we have the following observations:

e The high AUC scores indicate TGE-PS is practical and re-
liable in zero-shot scenarios. The unstable performance of
CANE (TE) indicates that without trained NE, the model
is incapable of making reasonable inference from tex-
tual information and may perform even worse than Text
Matching.

e Word-level embeddings are essential in embedding nodes.
This is not surprising given that there are much more
words (100,471 in SNOMED and 72,083 in HepTh) than
characters (88 in SNOMED and 59 in HepTh).

e The improvements of character-level embeddings are
higher in SNOMED. We believe this is caused by charac-
teristic of medical terms in SNOMED that are often com-
posed of sub-words. As we stated before, character-level
embedding excels in capturing such information.

It is also worth noting that graph embedding models dif-
fer in the capacity to deal with large graphs. All models in
Table 7 can handle HepTh, but some fail on SNOMED. We
also try to conduct experiments on GraphGAN in link pre-
diction task, but they fail on both datasets. Besides, we con-
duct experiments training TGE with node pairs sampled by
RW and they fail for taking extremely long time to finish
training on both datasets. Our TGE-PS performs well in han-
dling large graphs like SNOMED@20%, and can even be
trained in zero-shot scenario as presented.

Conclusions and Future Works

In this paper, we propose a novel Text-driven Graph Em-
bedding with Pairs Sampling (TGE-PS) framework. TGE-
PS includes two stages: sampling and embedding. In sam-
pling stage, we propose Pairs Sampling (PS) strategy coun-
tering drawbacks of popular Random Walk. PS reduces
~99% samples with competitive results on 7 datasets. In
embedding stage, we propose Text-driven Graph Embedding
(TGE) method that generates embeddings from text embed-
dings while preserving the structural information. TGE-PS
surpasses previous graph embedding models on link predic-
tion task, and produces remarkable results in zero-shot sce-
narios.

We will explore the following research directions in fu-
ture: (I) We will study on sampling strategy that converges to
more valid distributions of a; and f3;. (ii) We will improve
performance of TGE-PS on graphs with long texts like the
whole body of articles.
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